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I.  INTRODUCTION 

A major enhancement to the capabilities of EPIC-2,  a 
Lagrangian finite element impact code, has been developed and 
implemented enabling the modeling of deep penetration and/or 
perforation of targets.  This paper presents the techniques which 
were developed to handle dynamic relocation of sliding surfaces 
and the automatic addition of new sliding surfaces when 
necessary. 

These techniques were first applied to the modeling of 

begin and proceed "naturally," ultimately resulting in 
perforation when warranted, are discussed.  A parametric study is 
presented of a hardened, roller bearing steel cylinder impacting 
a pure titanium target at normal obliquity.  Experimentally 
target failure was considered to be the result of plugging due to 
high strains.  Only the striking velocity and the critical level 
of equivalent strain necessary to mandate failure were varied in 
the simulations.  The results are demonstrated to be consistent 
between calculations; furthermore, no rezoning or manual 
intervention was involved in any of the calculations. 

Some discussion is included of a second impact situation 
similar to the first except that the target was a titanium alloy, 
Ti 313 (6%A1,4%V). The plugging failure in this situation was 
considered to be the result of adiabatic shear.  It is shown that 
this case can not be successfully modeled if only the equivalent 
strain criterion is utilized to predict failure without 
consideration being given to possible thermal softening in the 
equations involved. 

Also discussed is the extrapolation of these techniques to 
handle other failure mechanisms, plane strain simulations, and 
multitarget situations. 

II.  GEOMETRICAL CONSIDERATIONS 

The impetus for this effort was the desire to model ballistic 
impact situations where the primary mode of target failure was 
plugging, whether due to high strains or adiabatic shear. In 
papers by Moss  and Zener and Hollomon  describing the results of 
punching experiments, the thicknesses of the shear bands measured 

Johnson,  G. P.,   "EPIC-2, A Computer Program For Elastic-Plastic Impact 
Computations in 2_ Dimensions Plus Spin, " US Army BRL Contract Report 
ARBRL-CR-00373,  June  19 78  (AD A058786). 

" Moss, G. £.j   "SPiear Strains, Strain Rates and Temperature Changes in Adiabatic 
Shear Bands," US Army BRL Report ARBRL-TR-02242, May 1980  (AD A087765). 

3 Zener,  C, Hollomon,   7. H.,   "Effect of Strain Rate Upon Plastic Flow of Steel," 
J. Appl.  Phys.,   V.   16,   1944,   22. 



were in hundredths of a millimeter; the velocities involved were 
in tens-of-meters/sec.  Johnson  noted that "the faster a 
punching operation is, the higher the strain rate and the larger 
the flow stress but the narrower the shear zone." 

In modeling ballistic impacts with EPIC-2, triangular element 
sizes are typically measured in tenths of a millimeter. 
Therefore, in simulating a region an order of magnitude smaller, 
the author decided to let splitting occur between elements when 
an element has attained a particular failure criterion. 

In the original version of EPIC-2, material fracture is 
simulated by enabling elements which are not master surface 
elements to fail in two possible ways: 1)  failure in shear and 
tension if the element exceeds specified equivalent or volumetric 
strain levels, 2)  total failure if the element exceeds a 
specified equivalent strain level. In the first case the element 
is still able to withstand hydrostatic compression while in the 
second case all stresses including pressure are set equal to 
zero. 

Since the master sliding surface has to remain intact, only 
nonmaster elements can be totally failed and therefore only 
relatively moderate penetration problems can be handled before 
severe grid deformation in the target essentially halts a 
calculation. 

In the effort discussed in this paper provision was made to 
totally fail any element, including master surface elements, when 
it reaches another, as yet unspecified, failure criterion. The 
rationale was that shearing should be simulated by splitting 
between elements and that eventually the levels of equivalent 
strain suffered by some elements would probably require total 
failure of those elements, simulating erosion. 

EPIC-2 initially had two-triangle element arrangements and 
the choice of orientation of the diagonal between the triangles 
was left to the user. Johnson  recently recommended, however, due 
to the excessive stiffness of triangular elements in this 
arrangement, that future EPIC-2 simulations utilize crossed 
triangles  (4 triangles in a quad)  arrangement.(Note the element 
arrangement in Figure la.)  The geometry generator for this 
arrangement was therefore utilized in this work. 

Johnson,  W.,    Impact Strength of Materials,    Edward Arnold Ltd.,   1972. 

Johnson,  G.  R.,   "Triangular Element Arrangement for EPIC-2," Internal 
Memorandum,  July  1979. 



III.  SLIDING SURFACE TECHNIQUES IN EPIC-2 

The original version of EPIC-2 utilizes sliding surfaces 
comprised of master and slave nodes to keep projectile and target 
materials separate.  For each time increment, the equations of 
motion are applied to the master nodes (usually the target 
frontal surface) and the slave nodes (usually those on the 
projectile surface likely to interact with the target). 

The sliding surface routines did not include a double pass, 
the necessity for which is discussed in Reference 6. Under 
certain conditions crossovers (interference) occurred between 
projectile and target materials. Sliding surface routines 
developed by Lambert which included a double pass for 
interference—slave nodes versus master surfaces, then master 
nodes versus slave surfaces—were therefore utilized. If there is 
interference in the first case the slave node is placed on the 
master surface in a direction normal to the master surface. 
Similarly, an interfering master node is placed on the slave 
surface.  Ensuring that translational and rotational momenta are 
conserved, the velocities of the interfering node and the two 
nodes comprising the surface involved are updated. 

IV.  NEW SLIDING SURFACE TECHNIQUES 

The author's work involved:1)  enabling splitting between 
elements 2)  enabling the total failure of any element and 3) 
the dynamic relocation of the master/slave surfaces involved in 
order to accommodate splitting or element failure.  This was 
necessary in order to handle the modeling of deep penetration and 
perforation of targets.  It is assumed that the slave surface 
resides on the projectile exterior and the original master 
surface specified by the user is the frontal target surface. 
(This is arbitrary and could readily be reversed.) 

When an element attains Criterion 1,* indicating that fracture 
simulated by splitting between elements is to occur, a node is 
essentially split in two (Figures la, lb); the "split" node 
retains the original node number, the "new" node is assigned the 
next node number available. The "split" node, that meeting 
Criterion 2,* also must be a master node or the element involved 
is rejected as causing splitting.  The direction of the split, 
determined by a third criterion,* establishes the "next" node, 
the node from which further splitting must occur. 

Johnson,  G.  /?., "Dynamic Analysis of Explosive-Metal Interaction in Three 
Dimensions," J. Appl. Mech.,   V.   103,  No.   1, March 1981. 

n 
Lambert, J.  P., private communication.    Work done at BRL,   1980. 

* These criteria are defined and discussed in Section VI. 
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Once the "split," "new," and "next" nodes are determined, the 
elements are assigned the "split" or "new" node depending on 
which side of the split they reside. Both the "next" nod* and the 
"new" node are now inserted in the master surface after the 
original "split" node, thereby dynamically relocating this 
sliding surface.(See Figure 2a.)  The "new" node is assigned the 
same coordinates, velocities and restraint properties as the 
"split" node.  The masses assigned to the "split" and "new" nodes 
are based on which elements now share each node. The forces 
assigned the "split" and "new" nodes are based on the ratios of 
the newly assigned nodal masses to the original pre-split nodal 
mass. 

Besides interference between the projectile (slave surface) 
and target (master surface), there must be concern about possible 
interference between the two sides of the split developing in the 
target.  This is handled by establishing another set of 
master/slave surfaces whose mutual interference is checked 
identically to the first set. The second slave surface is 
considered to be the first master surface up to and including the 
original "split" node.  The second master surface is considered 
to be the first master surface starting with the "next" node, the 
second node being the "new" node.(See Figure 2b.) This was also 
done arbitrarily in that the second master and slave surfaces 
could reverse positions and the result should be the same. 

Interference between master and slave surfaces is based on 
the stipulation that the slave surface remains to the left of the 
master surface proceeding in the increasing direction of the 
sliding surface. A necessary addition to the sliding surface 
treatment was the consideration of an interposing surface between 
a supposed interfering slave or master node and a corresponding 
master or slave surface.(See Figure 3.)  The master node M is to 
the right of slave surface Si but it is also to the left of slave 
surface S2.  M therefore appears to be interfering with S2 but 
surface SI interposes so M does not validly interfere. 

The split continues until either the projectile velocity 
reaches zero or until target perforation occurs.  When the "next" 
node is positioned on the distal target surface, perforation is 
imminent; a discontinuity in the sliding surface enables complete 
separation of the plug from the remaining target material.  There 
is no further test for elements reaching Criterion 1. 

V.  EXPERIMENTAL IMPACT SITUATIONS 

Two experimental impact situations served as a basis for this 
study and were conducted and discussed by Woodward.   Both impact 
situations involved a blunt, hardened, roller bearing steel 
cylinder impacting titanium targets at 0  obliquity.  In the 

? Woodward, R. L.y   "The Penetration of Metal Targets Mich Fail By Adiabatio 
Shear Plugging." Int.  J.  Mech.  Sei.,   V.   20,   1978,   599-607. 

11 
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first case the titanium target was 99% pure titanium (Ti 125) and 
target failure was considered to be the result of plugging due to 
high strains.(See Table 1 for specifics on impact situation.)  In 
the second case the target was a titanium alloy, Ti 318 
(6%A1,4%V), and target failure was the result of plugging due to 
adiabatic shear. 

The first case is the basis for the parametric study 
presented.  The expected energy to accomplish perforation of the 
Ti 125 target with a blunt cylinder was estimated to be 148 
joules (Reference 8) implying a critical velocity of 
approximately 300 m/s. 

Prior to enabling splitting between elements, the simulation 
was attempted with a striking velocity of 350 m/s to assure 
perforation; this was run for 10 ys, the deformation pattern 
of which is shown in Figure 4a, indicating the formation of an 
incipient shear band.  The deformed target elements around the 
projectile periphery suffered an equivalent strain of 300% by 10 
ys. 

Contrast these results with those for the simulation of the 
second case, the target material being Ti 318 (Figure 4b).  There 
is no sign of a shear band by 10 ys. The highest strain suffered 
by an element in the top layer was 88%, the highest second layer 
element having reached only 13% strain. Clearly, adiabatic shear 
can not be successfully modeled without the addition of 
mathematical formulation to include thermal softening. Ti 125 has 
a far lower strength and a higher strain hardening rate than Ti 
318.  This would seem to be in agreement with Recht's criterion*' 
that a high shear yield stress and low strain hardening rate are 
conducive to adiabatic shear. 

VI.  DEVELOPMENT OF CRITERIA MANDATING TARGET FAILURE 

After the mechanical techniques described in Section IV 
were implemented, the author developed criteria which had to be 
met for the initiation and furthering of the splitting between 
elements to occur.  A criterion which remained constant during 
this study was the initiation and continuation of a split past_an 
element having attained a critical level of equivalent strain e 
(Criterion 1). 

According to Crandall, Dahl, and Lardner,^-^ describing the 
yielding tendency in terms of equivalent stress and equivalent 
plastic strain appears to correlate well with data when the 
ratios of the principal stresses remain constant during the test 

0 

10 

Reckt,  R.   F,,   "Catastrophic Thermoplastic Shear," J.  Appl.  Mean.   Trans., 
ASME31E,   1964,   189. 

Crandall,  S.  H,,  Dahl,  N.  C,  and Lardner,   T.  J.,   "An Introduction to Tlie 
Mechanics of Solids," McGraw-Hill,   1978. 

14 



Table  1.   Projectile and Target  Properties 

PROJECTILE TARGET   /   (77 125) 

ROLLED   &   ANNEALE 

TARGET   2   (Ti 318) 

MATERIAL HARDENED,   ROLLER ID         Ti   WITH 

BEARING   STEEL 99%   PURE   Ti 6% Al,   4% V 

SHAPE BLUNT 50 mm   SQUARE 50 mm   SQUARE 

MASS 3.34 g     

LENGTH 25.4 mm          THICK 6.35 mm 6.35 mm 

DIAMETER 4.76 mm     

DENSITY 7.39 x 103kg/m3 4.51 x 103kg/m3 4.43 x 103kg/m3 

YIELD   cr 2290 MPa 522.5 MPa 1029 MPa 

UTL   CTU 2500 MPa 600 MPa 120? MPa 

6u 00 .45 - .5 .2 

SPEC   HEAT 4.6 x 102J/kg°C 5.1916 x 102J/kg°C 5.65 x 102J/kg°C 

YOUNGS   MOD    1.93 x 10* MPa 1.158 x 10DMPa 1.158 x lO^MPa 
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Figure 4a. Steel Cylinder versus Ti 125 Target Figure 4b. Steel Cylinder versus Ti 318 Target 



and appreciable anisotropy is not developed during straining. 
The components of strain derived from the Mises yield criterion 
are much closer to physical observations than those found from 
the maximum shear-stress criterion." 

Another criterion (Criterion 2) which remained constant was 
the choice of the initial "split" node.  The node suffering the 
highest force associated with the first element meeting Criterion 
1 was selected to be the initial "split" node.  It was also 
required that this node be a master node or the element would be 
rejected as one enabling split to occur. After splitting was 
initiated, only those elements associated with the "next" node 
were considered for possible furthering of the split. Since the 
primary objective of this effort was to model target failure, and 
little projectile deformation was expected in the case of the Ti 
125 target impact, the projectile elements were not allowed to 
fail. 

The direction of the split (Criterion 3), the critical level 
of Criterion 1, and amendments to Criterion 1 varied during the 
solutions attempted. The following is a summary of the principal 
approaches taken and the results of each: 

1) Require only a specific level of F for an element to cause 
splitting. Results: a) Surface elements not contiguous to the 
projectile periphery suffered sufficient compression to attain e" 
first.    b) Splitting would proceed in one direction while the 
thrust of the problem proceeded in another. 

2) Require relatively high levels of e   (ie. 300%) for an element 
to cause splitting.  Results:  Calculation took far too long with 
only slight penetration predicted for an experimental situation 
in which perforation resulted. 

3) Base the direction of the split on nodal forces. Results: 
Nodal forces fluctuated widely; the split proceeded in one 
direction while the thrust of the problem proceeded in another. 

4) Let the split close up if the thrust of the problem went in a 
different direction, enabling the split to be furthered from a 
node other than the "next" node.  Results:  intractable. 

The following criteria which resulted in natural and pleasing 
results consistent with the thrust of the impact and consistent 
between problems were utilized in the parametric investigation of 
the impact situation described in Section V. 

17 



Criterion 1:  An element initiates or furthers a split 
1) when its equivalent strain W  reaches a user-specified 

critical level, 
2) if, in furthering a split, it is associated with the 

"next" node, 
3) if the magnitude of its shear stress is greater than 

the magnitude of its axial or radial deviator stress, 
and 

4) if the direction of the split (Criterion 3) does not 
change by 90  or more. 

Criterion 2:  The node at which initial splitting occurs 
1) must belong to the element meeting Criterion 1, 
2) must suffer the highest force of all three nodes 

belonging to the same element, and 
3) must be a master node. 

Criterion 3:  The direction of the split is determined by 
the strain of the element meeting Criterion 1.  If the 
magnitude of the axial strain is greater than the magnitude 
of the radial strain, splitting is to the nearer radial 
node.  Otherwise, splitting is to the nearer axial node. 

A discussion of some of the criteria is in order.  Obviously, 
every attempt was made to ensure the workability of an equivalent 
strain criterion.  It does not seem unreasonable to require the 
line of major fracture to continue from the "next" node and 
without a major (90 ) change in direction.  However, the 
requirement that the magnitude of the shear stress be greater 
than the magnitudes of the axial and radial deviator stresses may 
not be satisfying in a continuum mechanics sense.  This may, in 
essence, be invoking a maximum shear stress criterion. 

Maximum Shear Stress 

(1) 

where the radial stress 

T =   l/T\j(o    -  a )2  + 4T    2 max y    r        z rz 

r        r        r z 8  ' y   ' 

the  axial   stress 

°z - °z * °r +  °z +  a6   , (3) 

18 



Trz is the shear stress acting on the axial-radial plane, and o^t o 
are the radial and axial deviator stresses and the expression 
°r + °z + CT0   *s tne nydrostatic stress. Therefore, 

3 T   = l/2V(a - a )2  ♦ 4T 2 <4) max      v r   zJ rz 
Both the radial and axial deviator stresses have the same sign 
(-) so this expression reduces the effect of both, making the 
shear stress the crucial parameter.  However, in redoing the 
first calculation for 30 us and determining the maximum shear 
stress, some of the top elements modeling the target surface 
suffered sufficient compression to make the maximum shear stress 
calculated very close to that for the first element at the 
projectile periphery which was allowed to start splitting. 
Since experimental evidence did not exist with regard to the 
target erosion involved, the conservative position was taken that 
elements would only be totally failed when a minimum time 
increment violation occurred. 

VII.  RESULTS OF PARAMETRIC STUDY 

Four variations on the first ballistic impact situation, a 
hardened, roller bearing steel cylinder versus a Ti 125 (99% 
titanium) target, are presented.  The projectile and target 
properties remain the same for each (projectile and target 1 
properties in Table 1). 

The first calculation was made primarily to test out the 
techniques developed enabling splitting.  A striking velocity of 
500 m/s and a criticalc =100% were utilized to ensure a 
relatively fast calculation and one assuredly resulting in 
perforation.  At 35.6 ys perforation did occur.  This was the 
only calculation in which a minimum time increment violation 
occurred (at 44.7 ys) in a highly stressed element to the right 
of the plug.  The element was automatically totally failed for a 
minimum time increment violation and the calculation continued. 
By 45 us the projectile was no longer affected by the remaining 
target material and the residual velocity had settled to 237 m/s. 
If this were a multiple target situation, this would be the 
appropriate time to discard the first target (except for the 
plug) and add a second target.  This could be done relatively 
easily and automatically because the velocities of the plug nodes 
were an order of magnitude greater than the nodes representing 
the remaining target material. The deformation plots detailing 
the progress are shown in Figure 5. The pattern of elements which 
initiated and furthered splitting and the times at which they did 
so are shown in Figure 6. 

For the second through fourth calculations, a striking 
velocity of 350 m/s was utilized as it was closer to the 
experimental situation being modeled. A critical F of 100% was 
utilized for the second calculation, as with the first 
calculation. The projectile penetrated 5.08 mm before rebounding 

19 
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at 40 ps; splitting past six elements and layers had occurred. 
This calculation was allowed to continue until the rebound 
velocity stabilized at 27.4 m/s by approximately 70 ps. The 
deformation plots showing its progress are shown in Figure 7. 

The critical e was reduced to .75 for the third calculation 
in an effort to obtain perforation at 350 m/s.  The projectile 
penetrated further, to 5.49 mm, before rebounding at 
approximately 45 ys, reaching a rebound velocity of 20 m/s by 
50 ps.  In this calculation, splitting had occurred past nine 
elements (layers) before rebound occurred.  The deformation plots 
showing its progress are shown in Figure 8. 

For the fourth calculation, the critical e was reduced to .5, 
the rationale for the validity of such a low level being that the 
ultimate strain for the target material is e

u =.45-.5. This time 
perforation did occur, at 28.8 ps.  The deformation plots showing 
its progress through 70 v&  are shown in Figure 9. The pattern of 
elements which initiated and furthered splitting are shown in 
Figure 10. This is perhaps the most interesting case in that 
perforation occurred, a plug was completely formed, yet there was 
not sufficient energy for the penetrator and plug to continue 
past the remaining target. Instead, the projectile finally 
rebounded and, at 70 ps, had a rebound velocity of 7 m/s while 
the plug was still moving in the opposite direction past the 
remaining target material at 24 m/s. By 90 Ps the plug was 
essentially stuck in the target. 

For all four calculations the projectile speed histories are 
shown in Figure 11; the depth of penetration histories are shown 
in Figure 12.  In all calculations there was no manual 
intervention or rezoning involved as the problems progressed. 
Clearly, the results are consistent between calculations, a 
higher striking velocity producing perforation and a free-flying 
projectile and plug whereas the lower velocity resulted in 
projectile rebound. A lower level of critical e~ enabled complete 
formation of a plug and perforation whereas higher levels of 
critical r resulted in considerable penetration but no 
perforation.  The time of perforation in both calculations 1 and 
4 indicates average crack velocities of 178 m/s and 220 m/s, 
respectively. 

The deformation plots indicate large volumetric strains for 
the distal target elements by 40 ps, particularly for the first 
case.  Woodward   suggested that it might be due to a buildup of 
hydrostatic tension.  The hydrostatic tension had been limited to 
one third of the ultimate strength of the material in the 
calculation.  The calculation was rerun with the hydrostatic 
tension limited to 100% of the ultimate strength; the "blowup" of 
the distal target elements disappeared. (See Figure 13.) 

Woodward, R. L.s private communication. 
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Whereas the compressive wave traveled unhindered through to 
the rear of the target, the tensile wave was reflected from the 
rear of the target and limited to one third of the ultimate 
strength of the material.  Therefore, the rear surface elements 
received the brunt of the tensile wave, passing on only a 
severely reduced tensile wave to the interior elements.  In the 
second case, there was no such limitation on the tensile wave, 
thereby spreading the effect more evenly. 

VIII.  EXTRAPOLATION OF TECHNIQUES TO OTHER IMPACT SITUATIONS 

A. Axisymmetric, Piercing Failure Simulations 

For axisymmetric simulations of piercing failure, the 
techniques discussed in Section IV can be utilized with regard to 
the generation of the "split" and "next" nodes.  However, symmetry 
is about the z axis and the nodes along the z axis are restrained 
radially.  If the "next" node is restrained at the z axis (Figure 
14) then it simply becomes the first node on the master sliding 
surface and the "split" node is not split; instead, it is released 
from its restraint at the z axis.  Until an unrestrained node 
becomes the "next" node, there is no generation of new master and 
slave surfaces. 

B. Plane Strain Simulations 

The techniques discussed in Section IV can also be utilized 
in plane strain simulations, the primary difference being the 
need to generate a third, as well as a second, sliding surface to 
handle plugging failure. The development of the third sliding 
surface would proceed exactly as the second. The subsequent 
inefficient and unnecessary overlap of second master surface with 
the third slave and master surfaces could be eliminated by 
choosing a convenient midpoint at which to arbitrarily end the 
second master surface and begin the third slave surface. (See 
Figure 15.) 

C. Multitarget Situation 

Once target nodes and elements other than those comprising a 
plug are no longer affected by the projectile, modifications can 
be instituted to eliminate those target nodes with sufficiently 
low velocity and their associated elements.  In the calculation 
presented, the plug nodes had velocities which were an order of 
magnitude greater than the remaining target nodes. The second 
(and third, if for a plane strain simulation) sliding surface can 
then be eliminated and a second target surface generated.  The 
various, possibly complex, sliding surface interactions which 
would be necessary would depend on the particular new target 
situation and whether the projectile and plug stayed together 
while impacting the second target. 
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IX.  CONCLUSIONS 

Techniques have been described which enable the dynamic 
relocation of sliding surfaces and addition of new ones, when 
necessary, in order to enable EPIC-2 to handle deep 
penetration/perforation of targets in ballistic impact 
simulations. These techniques were first applied to an 
axisymmetric ballistic impact test case where plugging was the 
primary failure mode.  The development of criteria which 
determined the occurrence of fracture "naturally" as well as a 
parametric study of a normal impact situation involving plugging 
failure were presented. Future work includes utilizing these 
techniques in attempting to model plugging due to adiabatic 
shear, the extrapolation of these techniques to model other 
target failure situations such as piercing, plane strain 
simulations, and the marriage of splitting and erosion 
techniques. It should now be feasible to consider utilizing this 
modified Lagrangian code to address multiple target situations as 
well. 
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